Incremental Construction of Alpha Lattices and Association Rules

نویسندگان

  • Henry Soldano
  • Véronique Ventos
  • Marc Champesme
  • David Forge
چکیده

In this paper we discuss Alpha Galois lattices (Alpha lattices for short) and the corresponding association rules. An alpha lattice is coarser than the related concept lattice and so contains fewer nodes, so fewer closed patterns, and a smaller basis of association rules. Coarseness depends on a a priori classification, i.e. a cover C of the powerset of the instance set I, and on a granularity parameter α. In this paper, we define and experiment a Merge operator that when applied to two Alpha lattices G(C1, α) and G(C2, α) generates the Alpha lattice G(C1∪C2, α), so leading to a class-incremental construction of Alpha lattices. We then briefly discuss the implementation of the incremental process and describe the min-max bases of association rules extracted from Alpha lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Maintenance of Association Rule Bases

Association rule mining from transaction databases (TDB) is a classical data mining task, whereby the most computationally intensive step is the detection of frequently occurring patterns, called frequent itemsets (FIs), from which the rules are further extracted. The number of FIs may be potentially large, leading to an even greater number of rules. Approaches based on closure operators, Galoi...

متن کامل

Alpha Galois Lattices: An Overview

What we propose here is to reduce the size of Galois lattices still conserving their formal structure and exhaustivity. For that purpose we use a preliminary partition of the instance set, representing the association of a “type” to each instance. By redefining the notion of extent of a term in order to cope, to a certain degree (denoted as α), with this partition, we define a particular family...

متن کامل

Topological Residuated ‎Lattices

In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...

متن کامل

Elastic/plastic Buckling Analysis of Skew Thin Plates based on Incremental and Deformation Theories of Plasticity using Generalized Differential Quadrature Method

Abstract   In this study, generalized differential quadrature analysis of elastic/plastic buckling of skew thin plates is presented. The governing equations are derived for the first time based on the incremental and deformation theories of plasticity and classical plate theory (CPT). The elastic/plastic behavior of plates is described by the Ramberg-Osgood model. The ranges of plate geometries...

متن کامل

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010